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Abstract: Economic impacts of energy infrastructure incidents have been a focus of attention, especially
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focus on individual pipeline incidents, we provide the first nationwide assessment of pipeline incidents’

impacts on housing prices using data from 864 gas distribution pipeline incidents and 17 million property

transactions from 2010 to 2020. A difference-in-differences analysis finds that a pipeline incident decreases

housing prices by 4%–6% on average. We explore the heterogeneous impacts of incidents with different

characteristics. These heterogeneous impacts can potentially explain conflicting results from previous

studies.
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1 Introduction

Pipelines are critical infrastructure for transporting various types of hazardous materials (HAZ-

MAT), including petrochemicals such as natural gas, crude oil, and other petroleum products as

well as carbon dioxide (Masters, 2022). Since 2004, the unprecedented development of shale oil

and shale gas in the United States has created enormous demand for oil and gas transportation

from the U.S. Heartland to the coastal regions. An estimated three million miles of pipeline deliver

trillions of cubic feet of natural gas and hundreds of billions of tons of liquid petroleum products

every year (Fan, 2016). This surge in pipeline transportation heightens concerns about pipeline

safety and the socioeconomic costs associated with pipeline incidents. In the past 20 years, the

United States has witnessed 12,308 pipeline incidents, with an average of 650 incidents per year,

resulting in 306 casualties and more than $6 billion in property damage (PHMSA, 2021b). Recent

high-profile pipeline explosions remind us again that pipeline incidents cost lives and create grave

environmental damage (Ly, 2019; Weikel, 2011; Vigdor and Delkic, 2021). These concerns motivate

the comparison of pipelines with other modes of energy transportation, such as rail (Covert and

Kellogg, 2017; Tang et al., 2020).

Researchers have long been interested in using property-based hedonic analysis to estimate the

indirect costs associated with pipeline transportation of HAZMAT. However, most existing literature

on pipeline incidents is limited to the impacts of individual incidents (Wilde, Loos, and Williamson,

2012; Herrnstadt and Sweeney, 2017; McElveen, Brown, and Gibbons, 2017) or pipeline construction

announcements (Hilterbrand Jr, 2019; Boslett and Hill, 2019; Fruits, 2008) on nearby residential

property values. The spatiotemporal coverage of existing studies is restricted, leading to mixed and

inconclusive results. To better inform a rigorous cost-benefit analysis of HAZMAT transportation

via pipelines, studies with broader coverage are needed to increase external validity.

In this article, we provide the first nationwide assessment of pipeline incidents’ impacts on hous-

ing prices based on 864 gas distribution pipeline incidents from 2010 to 2020.1 We focus on the

incidents of gas distribution pipelines because a large portion of significant pipeline incidents oc-

curred on gas distribution lines. Also, most gas distribution lines stretch through densely populated

residential areas, making them more likely to impact housing prices. The purpose of this study

is two-fold. First, we estimate the average effects of 864 incidents on housing prices. Second, we

explore the heterogeneity in the impacts of gas pipeline incidents, which helps explain why previous

single-incident studies produce inconclusive results.

We collect data on the 864 gas distribution pipeline incidents in urban areas from PHMSA and

1Our dataset contains incidents associated with four types of pipelines: hazardous pipelines; gas-gathering
pipelines; gas transmission lines; and, gas distribution lines. Included incidents are associated with either feder-
ally regulated or state-regulated natural gas distribution pipelines.
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merge it with the Zillow Transaction and Assessment (ZTRAX) Dataset.2 The resulting dataset

covers the 46 contiguous U.S. states (the data excludes Maine and Vermont) between 2010 and 2020.

More than one-third of included incidents involve fatalities, injury, explosion, evacuation, or more

than $50,000 in direct damage (in 1984 dollars). In addition, the incident dataset contains a rich

set of incident characteristics including the type of HAZMAT, the degree of damage, the number

of residents evacuated, and others, allowing us to estimate the heterogeneous effects of pipeline

incidents.

We adopt a difference-in-differences (DID) framework to formally estimate the impacts of pipeline

incidents on housing prices using different subsets of the incidents while controlling for a rich set

of housing features and fixed effects. To construct the treatment and control groups, we apply a

data-driven approach, binscatter regressions, to identify the spatial and temporal extents of the

impacts of a pipeline incident. Results of binscatter regressions suggest significant post-incident

price divergence between houses within 1,000 meters and houses located further away. We define

houses within 1,000 meters of incident sites consist of the treatment group while houses between

1,000 meters and 2,000 meters whose values are not directly affected by incidents comprise the

control group. In terms of the temporal extent of incident effect, the price divergence persists about

500 days after the incident.

Our main results suggest that pipeline incidents on average dampen housing prices within 1,000

meters by 6%. The back-of-the-envelope calculation suggests an equivalent of $14 billion dollars

loss (in 2014 dollar) over a 10-year period. In addition, we report a series of important findings

on the heterogeneity in pipeline incident effects. Specifically, we find an incident that raises public

awareness due to evacuation, explosion, or ignition poses a more severe impact on housing prices.

Incidents that occur on private land or incidents occur on above-ground pipeline lead to a higher

impact on housing prices compared to those on an underground pipeline. In general, the more

salient an incident is, the more likely that nearby housing prices response to the impact. Since we

adopt a quasi-experimental framework, the hedonic estimation identifies the movement along the

ex post price function and serves as the lower bound of general equilibrium welfare (Banzhaf, 2021).

Our main findings pass multiple robustness checks and falsification tests.

This study directly relates and contributes to the literature on the impact analysis of envi-

ronmental hazards from energy infrastructure incidents. Previous studies in this area examine the

impacts of underground storage facilities (Guignet et al., 2018), shale gas production (Muehlenbachs,

Spiller, and Timmins, 2015), rail transportation of HAZMAT (Tang et al., 2020), and nuclear power

2Data provided by Zillow through Zillow Transaction and Assessment Dataset (ZTRAX). Interested readers can
find more information on accessing the data at http://www.zillow.com/ztrax. The results and opinions are those of
the author(s) and do not reflect the position of Zillow Group.
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plants (Isakson and Ecker, 2018). On the topic of pipeline incident impacts, however, studies based

on individual incidents produce mixed findings (Fruits, 2008; Wilde, Loos, and Williamson, 2012;

Herrnstadt and Sweeney, 2017; McElveen, Brown, and Gibbons, 2017; Hilterbrand Jr, 2019; Boslett

and Hill, 2019). We contribute to the literature by providing a nationwide assessment for pipeline

incidents with more external validity and by reconciling conflicting results from previous studies

as heterogeneous incident impacts. More broadly speaking, we can consider pipeline incidents as a

form of information disclosure since many residents either do not know of the existence of pipelines,

or do not fully appreciate the potential risks. Results from this study also contribute to the theo-

retical and empirical literature on how information disclosure affects housing prices as discussed by

Pope (2008a). The following section provides a more detailed literature review.

This article proceeds as follows: Sections 2 and 3 introduce the background of gas pipeline

incidents and related literature. Section 4 discusses the data. Section 5 includes formal evaluation

of the impacts of incidents on nearby housing prices. Section 6 shows the estimation results and

robustness checks. Section 7 concludes.

2 Background

Policy changes and technological innovation have contributed to the boom of domestic shale gas de-

velopment since the early 2000s (Wang and Krupnick, 2013). Since then, the total domestic natural

gas consumption has grown 12.5% (about 27.5 trillion cubic feet), compared with consumption in

2000 (Vetter et al., 2019). These factors triggered a surge in the construction of pipelines across the

United States for distributing newly discovered natural gas from the U.S. Heartland to the coastal

regions. According to PHMSA, the newly constructed natural gas distribution pipeline ranges from

24,000 to 50,000 miles during the past 15 years.3 Among all types of natural gas pipelines, gas

distribution pipeline accounts for more than 80% of the total mileage of gas pipelines in residential

areas (Pless, 2011). In 2018, roughly three million miles of natural gas pipelines transported almost

28 trillion cubic feet of gas nationwide, which is roughly 13 times the volume of Mount Everest

(Kelso, 2020). The natural gas distribution industry has grown to $169 billion in 2021 and it has

supported 4.1 million U.S. jobs in 2020. (IBIS World, 2021; The Empowerment Alliance, 2020).

Even though some claim that pipelines are the safest transportation approach for crude oil and

natural gas (Kenneth and Taylor, 2015), aging pipelines have become a potential threat to safety as

more than half of the pipelines were installed 40 years ago (Sider and Friedman, 2016). In the United

States, PHMSA is responsible for regulating and overseeing nationwide pipeline transportation of

3Detailed information can be found at PHMSA’s website: https://www.phmsa.dot.gov/
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HAZMAT. Once an incident occurs, the pipeline operator is expected to seek help from emergency

correspondents at the local, state, or federal levels4 and submit an incident report within 30 days

(PHMSA, 2021a). Due to these mandatory reporting rules, PHMSA has integrated comprehensive

pipeline incident data going back to the 1970s, and precise longitude and latitude information are

available starting in 2010. In this study, we are able to geocode and match incidents with nearby

properties after 2010.

Most gas distribution pipelines go through areas with dense populations and some connect

to residential properties directly, which galvanizes concerns for human health and safety. However,

researchers have not adequately quantified the economic impacts of pipeline incidents on the residen-

tial community and the environment. According to the statistics from PHMSA, pipeline incidents

account for about $500 million direct cost each year (PHMSA, 2021b). In this study, the estimated

indirect cost of pipeline incidents due to property value loss is about three times higher than the

direct cost gauged by PHMSA. Another missing part in PHMSA’s calculation is gas leackage. Be-

tween 2000 and 2011, U.S. consumers paid more than $20 billion for natural gas that escaped into

the air due to pipeline failure (Vetter et al., 2019). A study in progress reports that natural gas

leakage in residential areas in Massachusetts led to a $12,000 loss in housing prices on average (Shen

et al., 2021). In addition, pipeline failure may generate other unexpected negative externalities. For

example, Xu and Xu (2020) study the effects of pipeline hazards on credit risk. They find that

pipeline-present areas have a lower origination rate compared with pipeline-free areas and pipeline

incidents further magnify by 1.8%.

3 Literature Review

This study relates to two strands of literature. First, we provide new empirical evidence on the

impacts of energy infrastructure incidents. Zabel and Guignet (2012) and Guignet et al. (2018)

find a negative impact of underground storage tank leaks on housing values and home sales when

owners reveal the leakage information. Isakson and Ecker (2018) find lower willingness-to-pay for

houses within 0.25 miles of multiple leaking underground storage tank sites, compared with those

located further away. Muehlenbachs, Spiller, and Timmins (2015) find large negative impacts of

shale gas leaks on nearby groundwater-dependent homes. Tang et al. (2020) explore the impact of

derailments on nearby housing values and find significantly negative, but short-term impacts within

one mile of derailment sites. Boes, Nüesch, and Wüthrich (2015) identify the negative impact of

the 2011 Fukushima nuclear power incident on rents near nuclear power plants in Switzerland.

4In our dataset, the time difference between incident occurrence and operator resources arriving on site are very
small, implying an immediate response to pipeline incidents.
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Tanaka and Zabel (2018) and Zhu et al. (2016) obtain similar results by using U.S. housing market

data and Chinese land markets near nuclear power plants, respectively. Moreover, Nolte et al.

(2021) find that the discovery of contamination and subsequent investigation of treatment, storage,

and disposal facilities depreciate the property values within 750 meters of a facility. Our research

provides additional evidence on the impacts of energy infrastructure incidents on nearby housing

values using nation-wide data. Different from incidents related to other energy infrastructures,

nearby residents are often unaware of the existence of pipelines and incidents.

Previous studies are inconclusive about how pipeline incidents impact nearby housing value. By

exploring a single pipeline incident, Herrnstadt and Sweeney (2017) and McElveen, Brown, and

Gibbons (2017) find little evidence that nearby housing prices capitalized the incident. Wilde,

Williamson, and Loos (2014) and Fruits (2008) find that neither announcement nor construction of

pipeline has significant impact on nearby residential housing prices. Wilde, Loos, and Williamson

(2012) summarize previous results and conclude that, based on sales data, there is no evidence that

proximity to pipelines reduces property values. Hansen, Benson, and Hagen (2006) find that owners

sell houses closer to a pipeline at a discount after an explosion, but not before. However, there is

no formal test of the difference between these coefficients. Lee et al. (2021) study a underground

pipeline explosion in Taiwan and find negative effects on housing prices that may persist over longer

periods. Hilterbrand Jr (2019) uses an experiment to find that disclosure of pipeline location affects

buyers’ offers for a nearby property. The heterogeneity of different pipeline incidents may be the

cause of the above inconclusive results. For instance, an incident associated with underground

pipeline may be ignored and has little effect on property value. Our study contributes to the

literature by providing nationally representative estimates using pipeline incidents over the past

decade as well as evidence for heterogeneity in different pipeline incidents.

Second, we showcase the value of information disclosure under the hedonic framework via salient

signals like pipeline incidents. Researchers widely employ hedonic models in the empirical literature

(Sieg et al., 2002; Banzhaf, 2020; Bishop et al., 2020; Bishop and Timmins, 2018; Bishop, 2008; Ma,

2019; Bishop and Murphy, 2011), which increasingly discusses the role of information disclosure and

where home buyers’ preferences captured by the hedonic model depend on the amount of information

available to them. Pope (2008a) is among the first to consider how asymmetric information between

buyers and sellers can affect the hedonic price gradient and show that airport noise disclosure reduces

the value of houses. Furthermore, Pope (2008b) studies seller disclosure for flood zones and finds

a significant decline in housing prices in flood zones after disclosures. Walsh and Mui (2017) use

a disclosure law to explore the impact of information on a hedonic analysis. Guignet et al. (2018)

argue that incomplete information can lead housing markets to underprice disamenities. In most
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cases, home buyers do not know the exact location of a pipeline until salient signals, such as a

pipeline incident, emerge. Pipeline incidents compel home buyers to re-assess their bidding for a

property. Our paper reconciles previous inconclusive results and shows that the significant and

large impacts of incidents on housing prices often closely relate to the extent to which an incident

is salient and visible.

4 Data

4.1 Pipeline Incident Data

PHMSA defines an event as a pipeline incident if it meets at least one of the following conditions:

(a) a death or personal injury requiring hospitalization; (b) estimated property damage of $50,000

or more; or, (c) unintentional estimated gas loss of three million cubic feet or more. Between 1986

and 2020, PHMSA recorded 8,263 pipeline incidents associated with four types of gas pipelines,

including distribution lines, gathering lines, transmission lines, and liquid natural gas (LNG) lines.

Among those gas pipelines, gas distribution lines account for the majority (55%) of incidents. Com-

pared with other types of pipelines, gas distribution lines mostly go through or directly connect to

populated regions, which makes it possible to analyze the impacts of pipeline incidents on residential

property values. Figure A1 in the Appendix shows the distribution of the gas-distribution-pipeline

incidents nationwide between 2010 and 2020. Most gas distribution pipeline incidents (darker ar-

eas) are clustered in metropolitan areas. In this study, we analyze the 864 incidents associated

with gas distribution lines in urban places between 2010 and 2020.5 We focus on incidents in the

past decade for two reasons. First, data before 2010 have imprecise coordinate information, which

may lead to serious measurement error if included. Second, PHMSA changed the incident reporting

requirements after 2010 when they began requiring additional information regarding an incident,

such as the locality and the amenity of incident sites. We can therefore leverage that information

to perform comprehensive analyses on the heterogeneous effects. Furthermore, we narrow our focus

to the gas distribution pipeline incidents in urban areas where most housing transaction data are

available.6

In addition to basic information on the location, time, and cause of each incident, our dataset

provides additional details on each incident, such as the number of fatalities and injuries, the

estimated volume of gas unintentionally released, the estimated direct damage cost, the number of

5In total, the PHMSA pipeline incident dataset includes information on 1,222 incidents between 2000 and 2020,
among which 976 occurred in urban areas. We remove 112 incidents with few house transactions within about 13
kilometers (eight miles) of incidents and focus on the other 864 incidents in our analyses.

6We define urban areas both as urban areas and urban clusters according to 2010 census data.
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public evacuees, whether an explosion or ignition occurred, and whether the incident occurred above

ground or underground. Among all incidents included in this study, 32% are due to unintentional

excavation, 32% are due to damage by outside forces, and 7% are the result of natural force damage.

Furthermore, about 10% of incidents include fatalities, while more than 50% involve injuries or

explosions, respectively. More than half of the incidents led to public evacuation or ignition. Around

40% occurred in a private house or above ground, respectively (See Table B1 in the Appendix).

Based on PHMSA’s criterion for pipeline incidents, we identify 239 incidents that involved death

or personal injury requiring hospitalization, 482 incidents that caused property damage of $50,000

or more,7 and 159 incidents that generated a gas loss of a million cubic feet or more.8

4.2 Housing Transaction Data

We compile housing transaction data from the ZTRAX database. The ZTRAX database contains

about 491 million unique transactions associated with 161 million unique owner-occupied houses

across all 50 U.S. states, Washington D.C., and Puerto Rico. The housing transaction data include

detailed information on the sales amount, the date of transaction, and house structural character-

istics. Housing structural characteristics include the year of build, the number of bathrooms, the

number of bedrooms, the square footage, and indicators for air conditioners and a fireplace.

In the data cleaning process, we remove transactions with sale prices lower than $1,000, as well as

those with missing primary structural characteristics, such as the number of bathrooms or bedrooms.

For simplicity, we only use SFH transactions that are arms-length transactions. We deflate all sale

prices to 2000 dollars using the Federal Housing Finance Agency’s (FHFA) state-quarter house price

index.

4.3 Linking Housing Transactions to Pipeline Incidents

We link the housing transactions to pipeline incidents based on their coordinates. Specifically, we

treat each included incident site as the center and generate a total of 864 incident buffer zones with

a radius of 13 kilometers (eight miles).9 We select housing transactions that occurred within the

864 buffer zones for further analyses.10 We match each transaction with incidents based on their

timings of occurrence. We assign each house to either pre- or post-incident groups based on the

7PHMSA deflates all costs to 1984 dollars.
8PHMSA also defines a pipeline incident as ”serious” if fire is not the cause, but causes fatality or injury. If an

incident is either ”serious” or brings about property damage of $50,000 or more as well, PHMSA refers to the incident
as ”significant.” We identify 223 ”serious” incidents and 571 ”significant” incidents in the incident database.

9The eight-mile radius is a generous estimate of the potential impact range of a pipeline incident. The associated
buffer zone covers sufficient transactions to measure the extent of incident impacts on housing transactions. See
Section 5 for more details.

10In the data matching process, we exclude transacted houses less than five meters from the incident site as such
transacted houses may receive large direct damage.

8

Electronic copy available at: https://ssrn.com/abstract=4116305



time difference between the transaction date and incident date. A complication arises when more

than two incident buffers overlap. Transacted houses that fall within the overlapping areas may

link to more than one incident. For simplicity, we link properties transacted after multiple incidents

only to the post-incident group of the last incident.11

In summary, we obtain about 17 million unique property transactions associated with the 864

incidents. An incident, on average, matches with 106,036 transactions. The total number of trans-

actions before and after an incident are balanced. We leverage the 17 million transactions to identify

the spatiotemporal extents of incident impacts using the binscatter regressions and thus construct

the treatment and control groups for DID analyses. In the DID analysis, the sample size shrinks to

19,435 transactions and 219 associated incidents. The substantially lower number of observations

is due to three reasons: first, the defined treatment and control groups cover circle areas with a

2-kilometer, instead of a 13-kilometer (8-miles), radius from incident sites; second, the temporal

extent of pre- and post-incident groups decreases from 1000 days to 500 days before and after

incidents; third, we remove transactions with incomplete information on housing characteristics.

5 Quantifying the Impacts of Pipeline Incidents on Housing

Values

Investigating the changes in housing values before and after a pipeline incident is a revealed prefer-

ence approach to measure the implicit costs of the incident. We first leverage binscatter regressions

to measure the spatiotemporal extents of incidents’ impacts. Based on the results in the first step,

we then estimate the incident impacts using a DID framework. We examine the estimation results

by incorporating several robustness checks and falsification tests.

5.1 Measuring the Spatial and Temporal Extents of Incident Impacts

In order to carry out the DID analysis, we first need to define the spatial coverage of the treatment

and control groups as well as the duration of the pre- and post-periods. To maximize the sample

comparability, houses in the control groups should be as close to the incident locations as those in

the treatment groups as possible, but are not affected by the incidents. Similarly, the post-period

should be as long as the impact persists. To achieve these goals, we need to determine the spatial

and temporal extents of incidents impacts.

We adopt a data-driven approach, namely binscatter regression, to uncover the relationship

11As to be discussed in the next section, to better serve our identification strategy, we limit houses linked to each
incident to those that located within 2 kilometers away from an incident and transacted 500 days before and after
the incident.
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between housing values and distance between incident sites and houses. Binscatter regression has

gained popularity because it provides a flexible yet parsimonious way to visualize and summarize

large dataset in a regression setting (Cattaneo et al., 2021). Compared to applications of polynomial

regression and canonical binscatter, binscatter regression provides optimal bin structure and robust

confidence band to facilitate statistical inference (Cattaneo et al., 2021). In addition, binscatter

regression offers a semi-linear approximation on the relationship between housing values and the

distance to incident sites. In this study, we expect the impacts of incidents on housing values to

gradually diminish with the distance from incident sites. Figure 1 depicts the logarithmic form

of housing values against the distance from incident sites based on the 17 million unique property

transactions within 13 kilometers (eight miles) of 864 pipeline incidents. The blue circle and red

square represent transaction prices before and after incidents, respectively, and the colored bands

are the 90% confidence intervals. The graphical result suggests that the average housing values

within 1,000 meters of incident sites plummet after incidents occur, but the two housing value

bands converge beyond the 1,000-meter range. Therefore, we determine that the spatial extent

of pipeline incidents’ impacts on housing values is approximately 1,000 meters. We assign houses

within 1,000 and 2,000 meters of an incident to the control group.12 The summary statistics indicate

that houses in the control are similar to those in the treatment groups.

Similarly, we employ the binscatter regression to identify the temporal extent of the incident

impact. Figure 2 plots the logarithmic form of housing values against time (days) before and after

the incidents. The blue circles represent the trend of housing values of properties within 1,000

meters of incident sites while the red squares denote that of properties between 1,000 and 2,000

meters away. Figure 2 indicates that the average housing values within 1,000 meters drop after

incidents while, in comparison, the average housing prices in the control group manifest a stable

trend over time. The price dive is noticeable and significant during the first 500 days after the

incident and seems to persist at least 1,000 days. We choose 500 days as the duration of the pre-

and post-periods, separated by the date of the incident.

5.2 Difference-in-Differences: Estimation of the Average Impact of Pipeline

Incidents on Housing Values

We now formally estimate the size of incident impacts using a DID framework. Based on the results

of binscatter analyses, we construct four groups for the DID analysis: a pre-incident control group;

a post-incident control group; a pre-incident treatment group; and a post-incident treatment group.

Specifically, we group properties located within 1,000 meters of incident sites as treatment groups,

12See Section 5.3 for an analysis on the covariates balance between those two groups of houses.
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while we categorize those between 1,000 and 2,000 meters away as control groups. We define the

pre- and post-period by using a time window of 500 days before and after the incident occurrence

date. We specify the DID model as:

ln(Price)it =α0 + α1Treati + α2Postt + γTreati × Postt (1)

+ θy + ηj + τp + ωz × t+ β1Xi + β2Xi × t+ εijpt

where ln(Price)it is the logarithmic form of the transaction price for the house i associated

with a pipeline incident that occurs at time t; and, Treati is a dummy variable, which equals 1 if

house i is within the 1,000-meter buffer of an incident, 0 otherwise. In our setting, a house with

treatment status Treati equal to 1 belongs to the treatment group, while those with Treati equal

to 0 belong to the control group. Postt is a dummy equal to 1 if a house within 500 days after the

occurrence of an incident, and is equal to 0 if the transaction happened within 500 days before the

incident. When a transaction falls into two or more overlapped incident buffer zones, for simplicity,

we link the specific transaction to only one of these incidents—the transaction serves in either the

post-incident groups of an incident or in the pre-incident groups of another incident, but not both.

We also add flexible fixed effects to control time-invariant or location-invariant unobservables.

τp is the incident fixed effect that removes unobservables specific to the time and location of each

incident. The location fixed effects, ηj , controls for time-invariant unobservables at the census

tract level. θy is year-quarter fixed effects, which controls for macroeconomic shocks influencing

all housing transactions each year. Due to the vast spatiotemporal extents of transaction data,

we also add the state-specific trend, ωz × t, to allow differential trends in the housing market of

each state.13 Xi represents the house characteristics as shown in Table 1. We also include the

interactions between house characteristics and yearly trend Xi × t in some model specifications to

allow consumers’ preferences to evolve over time (Kuminoff and Pope, 2013, 2014). We cluster

standard errors at the incident level.

In our DID framework, the parameter of interest is γ, which is identified by the difference in the

average housing values of treatment groups before and after an incident compared with property

values in the control groups associated with that incident. Equation (2) spells out the estimated

13We avoid adding census-tract-by-year or county-by-year fixed effects in the model because the incidents included
in the DID analysis are sparsely located nationwide such that few incidents happened in the same census tract or
county. Incorporating census-tract-by-year or county-by-year controls may absorb all the variations needed for model
identification.
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treatment effect:

γ =(E[ln(Price)1i1|Treati = 1]− E[ln(Price)1i0|Treati = 1]) (2)

− (E[ln(Price)0i1|Treati = 0]− E[ln(Price)0i0|Treati = 0])

where the superscripts on ln(Price) denote the counterfactual treatment status (1 if the transacted

house is within 1,000 meters of an incident, 0 otherwise) regardless of the incident occurrence status.

The main identifying strategy relies on the parallel-trends assumption where

E[ln(Price)0i1|Treati = 1]− E[ln(Price)0i0|Treati = 1] (3)

= E[ln(Price)0i1|Treati = 0]− E[ln(Price)0i0|Treati = 0]

This key assumption requires that, in the absence of treatment status, the potential log of the house

transaction price in the treated group follows the same trend as that in the control group.

Empirically, we can test the plausibility of the parallel trend assumption by event analyses.

Specifically, we interact the treatment dummy variables with year dummy variables as follows:

ln(Price)it =c0 +

6∑
τ=−6,τ 6=−1

ατ [1(t ∈ [τ × 90, (τ + 1)× 90])× Treati]+ (4)

+ θy + ηj + τp + ωz × t+ β1Xi + β2Xi × t+ εijpt

where we define fixed effects, state-year trends, house characteristics, and their year trends similar

to equation (1). The parameter of interest is ατ . τ is the index for time groups. Using 540 days

before and after an incident, we cluster 90 days as one group such that there are both six pre- and

post-incident groups. τ ranges from -6 to 6. Group 0 includes transactions within 90 days after an

incident. We set group -1 as the reference group. Each α indicates the difference between the control

and treatment groups in each group after holding the controls. The parallel trends assumption is

not contradicted if α−6 to α−2, which represent days -540 to -180, are statistically insignificant.

5.3 Summary Statistics and Covariates Balance Check

In total, we identify 219 out of 864 pipeline incidents where there are, on average, 88 housing

transactions nearby14. Figure A4 in the Appendix presents the spatial distribution of the 219

incidents compared to the full 864 incidents. The majority of the included 219 incidents are clustered

in the Midwest (e.g., IA, IN, OH, KY) and the East Coast (e.g., NY, PA, MA, NJ); however, regions

14Pipeline incidents that occurred in remote places and non-urban regions and therefore involve a small number of
houses are removed.
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with dense populations on the West Coast and the South also witnessed multiple incidents across

the years (See Figure A5 in the Appendix). The occurrences of the 219 incidents distribute evenly

across the entire study time frame (see Figures A2 and A3 in the Appendix). We compare the

characteristics of the selected 219 incidents with that of the full 864 incidents and calculate the

summary statistics in Table B1 in the Appendix. In general, the relative share of different types of

incidents in the DID sample resembles those in the full 864 incidents, with the exception that the

219 incidents include slightly higher proportions of explosion or ignition.

We further show the balance of covariate distributions in the treatment and control groups. Table

1 presents descriptive statistics of housing prices and characteristics of our data sample. Columns

(1) and (2) report the mean and associated standard error (in parentheses) of covariates for the

pre-incident control and treatment groups while columns (3) and (4) denote the same information

of post-incident control and treatment groups. We employ the Standardized Difference to assess

the balance in covariates between the pre-incident groups and post-incident groups, respectively.

An absolute standardized difference below 0.10 indicates covariate balance between groups (Austin,

2009). Results in columns (5) and (6) show that almost all housing covariates are balanced in the

pre-incident groups and post-incident groups.

6 Results

6.1 DID Results

Table 2 reports the DID estimations of local impacts of the gas distribution pipeline incidents.

From columns (1) to (4), we incrementally add fixed effects and year trend controls. Column (1)

adds year-quarter, block group fixed effect, and incident fixed effect. Starting from column (2), we

change the level of spatial fixed effects from block group to census tract, and further include the

state-specific trend in column (3). Lastly, the specification in column (4) considers the change of

home buyers’ preferences by incorporating the interaction between house characteristics and year

dummies. The number of observations changes by specification due to missing block group or

census tract information for some houses. All specifications have house and neighbor characteristics

included in Table 1.

All DID models consistently show a negative local impact of pipeline incidents on housing prices.

The coefficient of Treati × Postt ranges from about 4% to 6%. The effect estimation in column

(4) suggests that pipeline incidents dampen the average house price within a 1,000-meter radius

of incidents by 6.1%, which is statistically significant at the 5% level. The most flexible model in

column (4) is our preferred specification.
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We estimate equation (4) to test the plausibility of the parallel trends assumption. The event

study analysis adopts the control and treatment group definition and includes house characteristics.

We cluster all transactions in 90 days and generate seven temporal groups in the pre-incident period

and 6 groups in the post-incident period. Figure 3 shows how the price difference between treatment

and control groups evolves before and after the occurrence of pipeline incidents. In the pre-incident

period (i.e., negative group numbers), the price difference between the treatment and control groups

is not statistically different from zero. After the incidents, the price difference between treatment

and control groups is negative and significant, especially in the initial 90 days post-incident. After

270 days, property prices in the treatment group partially recover but do not fully return to the

pre-incident level, implying a possible long-term impact of the incidents on nearby housing prices.

6.2 Heterogeneous Effects

We leverage different subsets of incidents to evaluate the heterogeneous effects of various types of

incidents on nearby housing prices. Specifically, we examine impacts of incidents with different

severity, location, and positions (above ground or underground). We also explore the accumulated

effects of multiple incidents on housing values.

Table 3 shows estimations of the impacts of incidents that involve fatality or injuries. The

local impact of incidents with fatality or injury is about 2.3%, which is not statistically significant.

However, incidents without fatality or injury have a larger statistically significant impact (about

5.7%) on nearby housing prices. This result is counter intuitive and difficult to explain.

Table 3 also shows that incidents causing public evacuations, explosion, or ignition led to statis-

tically significant and negative impacts on properties within 1 kilometer compared with houses 1–2

kilometers away. However, the incidents not causing public evacuations, explosion, or ignition did

not see statistically significant or large impacts on nearby property. On average, pipeline incidents

with public evacuations lowered nearby housing prices by 7.6%. Moreover, explosion or ignition

would dampen the nearby housing prices by 14.5% and 8.3%, respectively.

Next, we examine the potentially differential impacts due to whether an incident occurred on

privately owned land or public land. As shown in Table 3, only incidents that occur on private land

yield a negative and statistically significant estimate; however, incidents that happened on public

land did not induce a large or statistically significant impact. Incidents that occurred on private

land likely took place in population-dense areas, and were thereby more salient to the residents.

However, most public lands are separated from residential regions, making incidents on public lands

less observable to private home owners. In addition, the results in table 3 show that incidents that

occur above ground bring housing prices down by about 12.5%, which is a much larger effect than
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those that occurred underground.

Lastly, we examine the cumulative impacts of multiple incidents on housing values. Although

our DID framework allows a transaction to match with only one incident regardless of the temporal

difference between the transaction date and incident date, we denote the number of historical

incidents associated with each property that falls within those incidents’ buffer zones before its

transaction. For instance, we may link a transacted property with an incident that occurred on

June 1, 2016, in the DID regression though we have tagged it as having experienced five historical

incidents beforehand. Based on results in Table 3, if a house experiences less than five incidents

before the transaction, the impact is around 6% with marginal statistical significance. In addition,

ceteris paribus, the value of a house that has experienced more than five incidents declines by 12.1%

on average. Our results indicate that an incident occurring in areas with a historically high density

of pipeline incidents would drive more housing value loss.

6.3 Robustness Checks

We conduct a series of robustness tests, including: (a) implementing a triple-difference analysis

by incorporating extra transactions farther away from each incident site; (b) adopting alternative

treatment and control groups to re-run the DID model; (c) performing a falsification test by artifi-

cially adjusting the occurrence date of incidents 500 days and 1,000 days earlier; (d) incorporating

a matching and regression method to further examine the original estimations; and, (e) adopting

different control groups by extending the distance bandwidths of control groups for the DID model

(i.e., 1,000–2,500 meter radius, 1,000–3,000 meter radius, 1,000–3,500 meter radius, and 1,000–4,000

meter radius.).

To construct the placebo treatment group, we first draw a 2,000-meter-wide band that is 3,000

meters away from each incident site. Transacted properties that reside within the created donut-

like band (i.e., between 3,000 and 5,000 meters away from each incident site) make up the placebo

treatment group. Correspondingly, we define transacted properties between 2,000 and 3,000 meters

and between 5,000 and 6,000 meters away from incident site as the placebo control group. Figure 4

gives an example of the placebo treatment and control groups. The black dot denotes an incident.

The red band (1,000 meters wide) represents the treatment group and the green region (1,000 meters

wide) is the control group. The yellow band (2,000 meters wide) is the placebo treatment group.

Lastly, the two blue donut-like areas serve as the placebo control groups of the incident. We specify

the triple-difference model as:
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ln(Price)ipt =α0 + α1Treati + α2Postt + α3Incidentipt + γ1Treati × Postt+ (5)

γ2Treati × Incidentipt + γ3Postt × Incidentipt + γTreati × Postt × Incidentipt

+ θy + ηj + τp + ωz × t+ β1Xi + β2Xi × t+ εipt

where Incidentipt is a dummy variable that equals 1 if house i transacted at time t is located

in the 2,000-meter radius of an actual pipeline incident p and 0 if located in the 2,000-meter radius

of the associated placebo pipeline incident. From equation (5), γ is the parameter of interest. The

placebo treatment and control groups contribute to a third degree of difference that helps further

dampen any regional shocks on housing markets and improve the estimation accuracy. We thus

expect to see a similar estimation on the incident impact using the triple-difference model. In Table

4 column (1), Post× Treat× Incidents shows a statistically significant estimation of -0.058 at the

5% level. The estimation result is similar to that from the DID model.

The second robustness check is to apply alternative treatment and control groups for our DID

model. Presumably, alternative treatment and control groups may generate a null effect of incident

on housing prices. To this end, we utilize transacted properties in the placebo treatment and control

groups from the triple-difference design (i.e., the yellow and blue regions in Figure 4) and re-run

the DID model. As expected, results in Table 4 column (2) provide evidence for the null effect of

incidents on housing prices using the placebo treatment and control groups.

As a falsification test, we artificially move the occurrence date of incidents 500 days or 1,000 days

earlier. A plausible causal relationship between pipeline incidents and housing values implies that

any incident with a manipulated occurrence date would generate null impacts on housing prices. As

expected, Table 5 columns (1)–(4) indicate insignificant and near-zero estimation of incidents with

manipulated occurrence date.

We further incorporate a matching and regression method to improve balance by adjusting for

pre-incident observable differences between these two groups. We incorporate the propensity score

matching method to improve the covariate balance between the treatment and control groups by

adjusting for pre-incident observable differences. Specifically, we match each transacted house in the

treatment group with one house in the control group based on their housing characteristics, followed

by running the DID model on the matched samples. We obtain 9,827 matched observations in total.

The regression results in Table 6 are quite similar to our main results.

Lastly, we check if the estimates are sensitive to the choice of control groups. By adjusting the

bandwidths of control groups from a 1,000–2,000 meter radius to 1,000–2500 meters, 1,000–3,000
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meters, 1,000–3,500 meters, or 1,000–4,000 meters and following model specification (4) in Table

2, Table 7 shows that the coefficients range from -0.04 to -0.052 with statistical significance at

least at the 10% level. Including extra transactions seems to dilute the estimations, but our main

conclusions on incident impacts on housing values remain.

6.4 Back-of-the-envelope Calculation

To further quantify the economic cost of pipeline incidents, we perform back-of-the-envelope calcu-

lations on the economic costs in terms of housing value reduction. We calculate that the average

price of houses within a 1,000-meter radius of pipeline incidents before the incident is $175,728.

Moreover, there are on average 953 houses within a 1,000-meter radius around each of the 1,222

incidents. Incorporating the information above and the DID estimates, we find that the pipeline

incidents caused around $10–$14 billion (U.S. dollars) in loss over a 10-year period due to nearby

house devaluation, which we can treat as the lower bound of the loss from house devaluation because

we only use transacted house information instead of housing stock. This is equivalent to around

1.4% of total U.S. house transaction values in 2014. (Statista, 2020)

7 Discussion and Conclusion

Pipeline safety and the economic impacts of pipeline incidents are of great concern to the public.

Based on a nationwide gas distribution pipeline incident dataset combined with a comprehensive

house transaction dataset, we provide the first nationwide assessment on the impact of 864 gas

distribution pipeline incidents on nearby housing values. The DID analyses on a subset of these

incidents show that housing values decline by 4%–6% on average when pipeline incidents occur

nearby.

We find significant negative impact of pipeline incidents on nearby housing values, which contra-

dicts some previous studies such as McElveen, Brown, and Gibbons (2017), Herrnstadt and Sweeney

(2017), and Wilde, Loos, and Williamson (2012), while confirming studies like Lee et al. (2021) and

Hilterbrand Jr (2019). Existing studies often focus on a single pipeline incident. As we show in this

paper, pipeline incidents have heterogeneous effects and one incident might not be representative of

others. Based on nation-wide 864 historical incidents and transaction data, our estimates provide a

more representative response of housing values due to pipeline incidents. Insignificant impacts from

pipeline incidents in previous literature may underestimate the implicit costs of pipeline incidents,

thus preventing policymakers from performing a comprehensive and accurate cost-benefit analysis

on newly pipeline constructions. Future research could examine whether there is a heterogeneous
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response among different population characteristics such as race, income level, etc. Moreover, it is

interesting to incorporate pipeline construction announcement information and investigate if resi-

dents react to pipeline announcements due to potential environmental hazard risks.
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Main Figures

Figure 1: Price function estimates by distance (meters) before and after pipeline incidents.

Note: This graph shows the binscatter regression results of price gradient relative to distance. The blue
and red bands indicate the 90% confidence interval of price gradient before (post=0) and after (post=1)
pipeline incidents, respectively.
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Figure 2: Price function estimates by time (days) before and after pipeline incidents.

Note: This graph shows the binscatter regression results of price gradient relative to the occurrence date
of incidents. The red and blue bands indicate the 90% confidence interval of price gradient of treatment
(treat = 1) and control (treat = 0) groups, respectively.

Figure 3: Price difference between treatment and control group before and after pipeline incidents.
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Figure 4: Illustration of triple difference construction.

Note: The graph shows the placebo treatment group in DDD analysis. The black dot denotes an incident.
The red band (1,000 meters wide) represents the treatment group and the green region (1,000 meters
wide) is the control group. The yellow band (2,000 meters wide) is the placebo treatment group. The
two blue donut-like areas serve as the placebo control groups of the incident. Each ring is 1,000 meters wide.
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Main Tables

Table 1: Descriptive Statistics for House Transaction Data in Control and Treatment Groups

Pre-Control Pre-Treatment Post-Control Post-Treatment Pre-Diff Post-Diff

Sales Amount ($1000) 178.4(278) 178.2(273) 202.5(318) 205.7(323) 0.00 -0.01
House Age (day) 16,956(1,003) 16,864(940) 18,043(1,113) 18,014(1,113) 0.09 0.02
Lot Size (1000 ft2) 11.56(53) 12.25(88) 11.71(59) 10.65(50) -0.01 0.02
No. of Stories 1.52(.49) 1.51(.48) 1.47(.50) 1.48(.50) 0.03 -0.01
Total Rooms 4.82(3.3) 5.00(3.4) 4.53(3.4) 4.75(3.3) -0.05 -0.06
Total Bedrooms 2.70(1.4) 2.86(1.3) 2.58(1.4) 2.67(1.4) 0.11∗ -0.06
Full Baths 1.49(.72) 1.49(.74) 1.52(.78) 1.49(.74) 0.01 0.04
Half Baths 0.61(.59) 0.61(.63) 0.58(.58) 0.61(.60) 0.01 0.06
Air Conditioner .82(.38) .79(.40) .82(0.38) .81(.39) 0.06 0.04
No. of Fireplaces 0.32(.47) 0.32(.47) 0.28(.45) 0.25(.44) -0.01 0.05
# of Obvs. 4,900 1,678 9,560 3,297 - -

Note: Standard errors in parentheses.
∗: Imbalance between control and treatment group.

Table 2: Difference-in-differences Estimation Results—–Local Impacts

(1) (2) (3) (4)

Post ×Treat −.0428 −.0311 −.0458∗ −.0629∗∗

(.0311) (.0312) (.0272) (.0276)
Post .0014 -.0122 -.0197 .0063

(.0294) (.0329) (.0282) (.0329)
Treat .0170 -.0097 .0140 .0284

(.0394) (.0344) (.0348) (.0342)
Covariates Yes Yes Yes Yes
Neighborhood Charact. Yes Yes Yes Yes
Year/Quarter FE Yes Yes Yes Yes
Pipeline Incidents FE Yes Yes Yes Yes
State Linear Trends No No Yes Yes
Spatial FE Census Tract Block Group Census Tract Census Tract
Covariates Specific Year Trend No No No Yes
# of Obvs. 19,435 19,123 19,435 19,435

Note: this table shows estimation results of equation 1 with different specifications. All models are based
on 19,435 observations within two kilometers of 219 pipeline incidents. Column (1) includes no state
linear trends and covariates specific year trend with census tract as spatial fixed effects; Columns (2)
through (4) increasingly include state linear trends and covariates specific year. Column (2) also changes
the spatial fixed effects to block group level. Columns (3) and (4) change back to census tract level fixed
effects. Standard errors in parentheses.
∗ ∗ ∗:statistically significant at 1% level.
∗∗: statistically significant at 5% level.
∗: statistically significant at 10% level.
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Table 3: Heterogeneous Effects of Pipeline incidents on Housing Values

Post× Treat Post Treat # of Obs.

Fatality=0 or Injury=0 -.0586∗∗ .0014 .0201 18,401
(.0290) (.0305) (.0377)

Fatality>0 or Injury>0 .0234 .0125 -.0992 3,831
(.0740) (.0737) (.0707)

With Pub. Evacuees −.0794∗∗ .0019 .0547 11,527
(.0351) (.0355) (.0517)

Without Pub. Evacuees -.0359 .0461 −.0167 7,895
(.0424) (.0597) ( .0387)

With Explosion −.1567∗∗∗ .0839 .0741 7,710
(.0431) (.0768) (.0435)

Without Explosion -.0257 .0082 .0115 12,584
(.0299) (.0347) (.0457)

With Ignition −.0867∗∗ .0273 .0426 13,563
( .0334) (.0356) (.0408)

Without Ignition .0308 .0271 −.0692∗ 5,852
( .0459) (.0493) (.0410)

Private Land −.0794∗∗ .0205 .0594 11,514
(.0338) (.0393) (.0396)

Public Land .0323 .0974 -.1372∗∗∗ 4,176
(.0764) (.0732) (.0459)

Above ground −.1331∗∗∗ .0736 .0116 7,522
(.0396) (.0657) (.0293)

Underground -.0028 .0088 .0187 11,905
(.0378) (.0351) (.0531)

Experience 1 Inci. -.0641∗ .0384 .0169 11,432
(.0372) (.0384) (.0368)

Experience 2 to 5 Inci. -.0684∗ .0348 .0402 13,881
(.0355) (.0500) (.0393)

Experience 5+ Inci. −.1286∗ .2386 .0256 7,075
(.0778) (.2395) (.0434)

Covariates Yes
Neighborhood Charact. Yes
Year-Quarter FE Yes
Pipeline Incidents FE Yes
State Linear Trends Yes
Covariates Specific Year
Trend

Yes

Spatial FE Census Tract

Note: this table shows estimation results of equation 1 with different sub-samples. It shows: (1). estimations of the
impacts of incidents that related to fatality or injuries; (2). results of incidents causing public evacuations, explosion, or
ignition; (3). estimation of the potentially differential impacts due to whether an incident occurred on privately owned
land or public land; (4). the cumulative impacts of multiple incidents on housing values. All the estimations are based
on column (4) in table 2. Standard errors in parentheses.
∗ ∗ ∗:statistically significant at 1% level.
∗∗: statistically significant at 5% level.
∗: statistically significant at 10% level.
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Table 4: Difference-in-Differences Estimation Results: Placebo
Test

DDD DID
(1) (2)

Post× Treat× Incidents −.0580∗∗

(.0257)
Post -.0232 -.0161

(.0182) (.0231)
Treat -.0064 -.0069

(.0101) ( .0101)
Post ×Treat .0035 .0031

(.0102) (.0105)
Incidents −.1010∗∗∗

(.0271)
Post× Incidents .03848∗∗∗

(.0218)
Treat ×Incidents .0243

(.0323)
Covariates Yes Yes
Neighborhood Charact. Yes Yes
Year-Quarter FE Yes Yes
Pipeline Incidents FE Yes Yes
State Linear Trends Yes Yes
Spatial FE Census Tract Census Tract
Covaraites Specific Year Trend Yes Yes
# of Obvs. 75,850 56,331

Note: this table shows estimation results of equation 5 as well as equa-
tion 2. Column (1) provides the result of a triple-difference analysis by
incorporating extra transactions farther away from each incident site.
Column (2) shows estimation of applying only alternative treatment
and control groups for our DID model. Model specifications are similar
to column (4) in table 2. Standard errors in parentheses.
∗ ∗ ∗:statistically significant at 1% level.
∗∗: statistically significant at 5% level.
∗: statistically significant at 10% level.
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Table 5: Difference-in-Differences Estimation Results: Falsification Test

500 days 500 days 1000 days 1000 days
(1) (2) (3) (4)

Post× Treat .0326 .0344 −.0044 -.0026
(.0359) (.0298) (.0273) (.0232)

Post .0310 .0551 .0437∗ .0521∗∗

(.0345) (.0305) (.0251) (.0253)
Treat -.0067 -.0105 -.0041 −.0119

( .0459) (.0348) (.0353) (.0364)
Covariates Yes Yes Yes Yes
Neighborhood Charact. Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes
Pipeline Incidents FE Yes Yes Yes Yes
State Linear Trends Yes Yes Yes Yes
Spatial FE Census Tract Census Tract Census Tract Census Tract
Covaraites Specific Year Trend No Yes No Yes
# of Obvs. 15,711 15,711 20,386 20,386

Note: this table provides the result of a falsification test by artificially adjusting the occurrence date of
incidents 500 days and 1,000 days earlier. The model specification of column (1) and (3) are based on
column (3) in table 2 while column (2) and (4) are based on column (4) in table 2. Standard errors in
parentheses.
∗ ∗ ∗:statistically significant at 1% level.
∗∗: statistically significant at 5% level.
∗: statistically significant at 10% level.

Table 6: Robustness Checks: Propensity Score Matching -
Difference-in-Differences

(1) (2)

Post× Treat −.0646∗ −.0670∗

(.0365) (.0357)
Post .0262 .0451

(.0405) (.0456)
Treat .0479 .0527

(.0379) (.0368)
Covariates Yes Yes
Neighborhood Charact. Yes Yes
Year-Quarter FE Yes Yes
Pipeline Incidents FE Yes Yes
State Linear Trends Yes Yes
Spatial FE Census Tract Census Tract
Covariates Specific Year Trend No Yes
# of Obvs. 9,827 9,827

Note: this table shows estimation results of one robustness check by
incorporating a matching and regression method to improve balance
between the treatment and control groups. Both estimations are based
on 9,827 observations. The model specification of column (1) is the
same as column (3) in table 2 while column (2) follows the column (4)
in table 2. Standard errors in parentheses.
∗ ∗ ∗:statistically significant at 1% level.
∗∗: statistically significant at 5% level.
∗: statistically significant at 10% level.
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Table 7: Difference-in-Differences Estimation Results: Change Control Groups

1000-2500 1000-3000 1000-3500 1000-4000
(1) (2) (3) (4)

Post× Treat −.0519∗∗ −.0394∗ −.0457∗∗ −.0428∗∗

(.0246) (.0223) (.0215) (.0216)
Post .0070 -.0005 .0113 .0116

(.0210) (.0202) (.0174) (.0159)
Treat .0147 .0098 .0155 .0150

( .0352) (.0332) (.0312) (.0308)
Covariates Yes Yes Yes Yes
Neighborhood Charact. Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes
Pipeline Incidents FE Yes Yes Yes Yes
State Linear Trends Yes Yes Yes Yes
Spatial FE Census Tract Census Tract Census Tract Census Tract
Covaraites Specific Year Trend Yes Yes Yes Yes
# of Obvs. 30,662 44,169 59,692 77,386

Note: this table shows estimations of the robustness check that adopts different control groups in the DID
model. Column (1) to (4) provides results of models with distance bandwidths from 1000–2,500 meter
radius, 1,000–3,000 meter radius, 1,000–3,500 meter radius, and 1,000–4,000 meter radius, respectively.
Model specifications are similar to column (4) in table 2. Standard errors in parentheses.
∗ ∗ ∗:statistically significant at 1% level.
∗∗: statistically significant at 5% level.
∗: statistically significant at 10% level.
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Appendix A: Additional Figures

Figure A1: Heatmap of gas distribution pipeline incidents, 2010–2020.
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Figure A2: Distribution of gas distribution pipeline incidents, 2010–2020.

Figure A3: Distribution of gas distribution pipeline incidents by month.
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Figure A4: Gas distribution pipeline incident distribution comparison between 864 full and 219
DID incidents.

Figure A5: Gas distribution pipeline incident distribution for 219 DID incidents, 2010–2020.
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Appendix B: Additional Tables

Table B1: Incident Attribute Comparison between 864 Full Incidents and 219 DID
Samples

864 Incidents 219 Incidents Diff.
Mean SD of Obvs. Mean SD of Obvs.
(1) (2) (3) (4) (5) (6) (7)

Fatality .064 .244 864 .059 .255 219 .484
Injury .220 .414 864 .224 .417 219 -.111
Public Evacuees .520 .499 806 .575 .495 203 -.055
Explosion .241 .428 851 .296 .457 219 -.055∗

Ignition .608 .488 864 .653 .477 219 -.044
Private Ownership .440 .496 864 .447 .498 219 -.007
Aboveground .377 .485 864 .388 .488 219 -.011

Note: The 864 incidents represent all gas distribution pipeline incidents in urban places we
use in our binscatter regression, and the 219 incidents indicate the incidents we use in our
DID regressions.
∗ ∗ ∗: statistically significant at 1% level.
∗∗: statistically significant at 5% level.
∗: statistically significant at 10% level.
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